You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

134 lines
4.8 KiB

5 months ago
# -*- coding:utf-8 -*-
import time
from docx import Document
from paddlenlp import Taskflow
from qwen_agent.agents import Assistant
import re
import json_repair
wordtag = Taskflow("knowledge_mining")
prompt = '''
.根据上述文本判断是否为具体的公司或组织名称你可以使用工具利用互联网查询
你只能在[具体的公司或组织名称,公益组织,简称,统称,泛化组织,政府单位,机关单位,学校行业类型其他]选项中选择答案,
回答格式[{companyName名称,"回答":"答案"}{companyName名称,"回答":"答案"}]不做过多的解释,严格按回答格式作答;
'''
llm_cfg = {
#'model': 'qwen1.5-72b-chat',
'model':"qwen2-72b",
'model_server': 'http://127.0.0.1:1025/v1', # base_url, also known as api_base
# 'api_key': 'sk-ea89cf04431645b185990b8af8c9bb13',
}
bot = Assistant(llm=llm_cfg,
name='Assistant',
# system_message="你是一个地理专家,可以准确的判断地理位置,如果你不确定,可以使用工具"
)
def getDocxToTextAll(name):
docxPath=name
document = Document(docxPath)
# 逐段读取docx文档的内容
levelList=[]
words=[]
addStart = False
levelText=""
i = 0
for paragraph in document.paragraphs:
# 判断该段落的标题级别
# 这里用isTitle()临时代表,具体见下文介绍的方法
text = paragraph.text
if text.strip():#非空判断
# print("非空")
words.append(text)
# 将所有段落文本拼接成一个字符串,并用换行符分隔
print("checkCompanyName",len(words))
text = '\n'.join(words)
# 将文本写入txt文件
with open("checkCompanyName.txt", 'w', encoding='utf-8') as txt_file:
txt_file.write(text)
def checkCompanyName(filename):
getDocxToTextAll(filename)
start_time=time.time()
error_places = []
for batch in read_file_in_batches('checkCompanyName.txt'):
res=process_batch(batch)
if(len(res)>0):
error_places.extend(res)
print(error_places)
end_time = time.time()
# 计算执行时间
elapsed_time = end_time - start_time
print(f"checkCompanyName程序执行时间: {elapsed_time}")
return error_places
def read_file_in_batches(file_path, batch_size=5000):
"""
分批读取文本文件
:param file_path: 文件路径
:param batch_size: 每批处理的字符数
:return: 生成器每次返回一批文本
"""
with open(file_path, 'r', encoding='utf-8') as file:
batch = []
char_count = 0
for line in file:
batch.append(line)
char_count += len(line)
if char_count >= batch_size:
yield ''.join(batch)
batch = []
char_count = 0
if batch:
yield ''.join(batch)
def process_batch(batch):
"""
处理一批文本
:param batch: 一批文本
"""
# 在这里添加你的处理逻辑
# sentences = re.split(r'[。\n]', batch)
# sentences = [sentence.strip() for sentence in sentences if sentence.strip()]
res=wordtag(batch)
placeList = []
isplace = False
for zuhe in res[0]['items']:
# 上一个的地名,这一个还是地名,就和上一个相加代替这个
zhi = zuhe.get("wordtag_label")
if isplace:
name = placeList[len(placeList) - 1]
if zhi.find("组织机构类")>=0 : # or zuhe[1] == "ns"
isplace = True
new_text = zuhe['item'].replace("\n", "")
placeList[len(placeList) - 1] = name + new_text
continue
if zhi.find("组织机构类")>=0 :
isplace = True
new_text = zuhe['item'].replace("\n", "")
placeList.append(new_text)
else:
isplace = False
placeList=list(dict.fromkeys(placeList))
placeStr = ",".join(placeList)
messages = [{'role': 'user', 'content': [{'text': placeStr+prompt}]}]
print("checkCompanyName",placeStr+prompt)
runList = []
for rsp in bot.run(messages):
runList.append(rsp)
data = runList[len(runList) - 1][0]["content"]
print("checkCompanyName",data)
parsed_data = json_repair.loads(data.replace('`', ''))
error_places = [place for place in parsed_data if place['回答'] == '具体的公司或组织名称']
print("checkCompanyName",error_places)
if len(error_places)>0:
for t in error_places:
keyword= t['companyName']
# 查找包含关键字的段落
paragraphs = re.findall(r'.*?' + re.escape(keyword) + r'.*?\n', batch)
t["yuanwen"]=paragraphs[0]
return error_places
else:
return error_places