You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

351 lines
16 KiB

import uuid
from langchain_chroma import Chroma
from langchain_community.embeddings import DashScopeEmbeddings
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from qwen_agent.agents import Assistant
import json_repair
import json
embeddings = DashScopeEmbeddings(dashscope_api_key="sk-ea89cf04431645b185990b8af8c9bb13")
# embeddings = HuggingFaceEmbeddings(model_name="shibing624/text2vec-base-chinese",model_kwargs={"device":"npu:5"})
device_id=0
import re
import time
from docx import Document
import shutil
from docx.opc.pkgreader import _SerializedRelationships, _SerializedRelationship
from docx.opc.oxml import parse_xml
import logging
import logging.config
import requests
# from myLogger import outLog
# outLog.logger = logging.getLogger("checkRepeatText")
userLog=None
def load_from_xml_v2(baseURI, rels_item_xml):
"""
Return |_SerializedRelationships| instance loaded with the
relationships contained in *rels_item_xml*. Returns an empty
collection if *rels_item_xml* is |None|.
"""
srels = _SerializedRelationships()
if rels_item_xml is not None:
rels_elm = parse_xml(rels_item_xml)
for rel_elm in rels_elm.Relationship_lst:
if rel_elm.target_ref in ('../NULL', 'NULL'):
continue
srels._srels.append(_SerializedRelationship(baseURI, rel_elm))
return srels
_SerializedRelationships.load_from_xml = load_from_xml_v2
# 记录程序开始的时间戳
def getOutlineLevel(inputXml):
"""
功能 从xml字段中提取出<w:outlineLvl w:val="number"/>中的数字number
参数 inputXml
返回 number
"""
start_index = inputXml.find('<w:outlineLvl')
end_index = inputXml.find('>', start_index)
number = inputXml[start_index:end_index + 1]
number = re.search("\d+", number).group()
return number
def isTitle(paragraph):
"""
功能 判断该段落是否设置了大纲等级
参数 paragraph:段落
返回 None:普通正文,没有大纲级别 0:一级标题 1:二级标题 2:三级标题
"""
# 如果是空行,直接返回None
if paragraph.text.strip() == '':
return None
# 如果该段落是直接在段落里设置大纲级别的,根据xml判断大纲级别
paragraphXml = paragraph._p.xml
if paragraphXml.find('<w:outlineLvl') >= 0:
return getOutlineLevel(paragraphXml)
# 如果该段落是通过样式设置大纲级别的,逐级检索样式及其父样式,判断大纲级别
targetStyle = paragraph.style
while targetStyle is not None:
# 如果在该级style中找到了大纲级别,返回
if targetStyle.element.xml.find('<w:outlineLvl') >= 0:
return getOutlineLevel(targetStyle.element.xml)
else:
targetStyle = targetStyle.base_style
# 如果在段落、样式里都没有找到大纲级别,返回None
return None
#寻找标题名称
def findTitleName(docxPath):
loopCount = 0
while True:
loopCount+=1
if(loopCount>=60):
raise Exception("文档读取超时,或文档存在问题无法读取")
break
try:
document = Document(docxPath)
break
except Exception as e:
time.sleep(1)
pass
# 逐段读取docx文档的内容
titleWords=[]
firstTitle = 0
firstTitleName=""
secondTitle = 0
sanjiTitle = 0
levelText=""
count = 0
numid =0
wordContent={}
total = len(document.paragraphs)
addStart = False#是否重新添加
yield "文档相似性检查----文档内容解析中",str(count),str(total)
for paragraph in document.paragraphs:
count+=1
yield "文档相似性检查----文档内容解析中",str(count),str(total)
# 判断该段落的标题级别
# 这里用isTitle()临时代表,具体见下文介绍的方法
text = paragraph.text
if text.strip():#非空判断
level = isTitle(paragraph)
if level=="0":
firstTitle+=1
secondTitle = 0
if(text.find("附件")>=0):
continue
titleWords.append("一级标题:".format(firstTitle)+text)
addStart=True
firstTitleName=text
elif level=="1":
secondTitle+=1
sanjiTitle=0
# words.append("\t"+"{}.{}".format(firstTitle,secondTitle)+text)
# titleWords.append("第{}章的二级标题:".format(firstTitle,firstTitle,secondTitle)+text)
elif level=="2":
sanjiTitle += 1
# words.append("\t"+"{}.{}".format(firstTitle,secondTitle)+text)
# titleWords.append("第{}章的三级标题".format(firstTitle, secondTitle,firstTitle, secondTitle,sanjiTitle) + text)
##先判断是不是一级标题
if addStart:
wordContent[firstTitleName]=[]
addStart=False
if level:
levelText=f"{int(level)+1}级标题-"+text
else:
if(text.startswith("") or text.startswith("注:")):
continue
if (len(text)>30 and firstTitleName):
numid+=1
wordContent[firstTitleName].append("{}".format(levelText)+text)
findTitleName_llm_cfg = {
#'model': 'qwen1.5-72b-chat',
'model':"qwen2-72b",
'model_server': 'http://127.0.0.1:1025/v1', # base_url, also known as api_base
# 'api_key': 'sk-ea89cf04431645b185990b8af8c9bb13',
}
yield '文档相似性检查----检查是否存在详细设计方案'
findTitleName_bot = Assistant(llm=findTitleName_llm_cfg,
name='Assistant',
system_message='按照要求选择最合适的,是唯一的'
)
prompt='''\n是文档的大纲,一级标题组成,哪一章存在与方案相关的内容
类似详细设计方案,详细服务方案,详细建设方案为最相关的,优先选择
类似设计方案,服务方案,建设方案为次相关,次级选择
类似方案是最后选择
按照这样的顺序选择最合适的
你只能从这两个答案中选择一个:{"name":"一级标题名称","answer":"存在"}或{"name":"","answer":"不存在"},不做过多的解释,严格按回答格式作答
'''
# print("\n".join(titleWords)+prompt)
messages = [({'role': 'user', 'content': "\n".join(titleWords)+prompt})]
runList=[]
for rsp in findTitleName_bot.run(messages):
runList.append(rsp)
data = runList[len(runList) - 1][0]["content"]
parsed_data = json_repair.loads(data.replace('`', ''))
try:
if(parsed_data["answer"]=="存在"):
yield parsed_data["name"],wordContent
else:
yield "文档相似性检查----未找到与详细设计方案相关内容,无法进行相似性比较"
except Exception as e:
userLog.warning(e)
userLog.warning(data)
userLog.warning(parsed_data)
yield "文档相似性检查----检查遇到问题,请联系管理员"
#获取文档中 详细设计方案 章节的所有内容
# def getDocxToText(docxPath,titleName,vector_store_path):
def getDocxToText(titleName,wordContent,vector_store_path):
# loopCount = 0
# while True:
# loopCount+=1
# if(loopCount>=15):
# raise Exception("文档读取超时,或文档存在问题无法读取")
# break
# try:
# document = Document(docxPath)
# break
# except Exception as e:
# time.sleep(1)
# pass
# # 逐段读取docx文档的内容
# levelList=[]
words=[]
# addStart = False
# levelText=""
# i = 0
# count = 0
# total = len(document.paragraphs)
# yield "文档相似性检查----文档内容解析中",count,total
# for paragraph in document.paragraphs:
# count+=1
# yield "文档相似性检查----文档内容解析中",count,total
# # 判断该段落的标题级别
# # 这里用isTitle()临时代表,具体见下文介绍的方法
# text = paragraph.text
# if text.strip():#非空判断
# if titleName:
# level = isTitle(paragraph)
# if(addStart and level=="0"):
# addStart=False
# if(level=="0" and (titleName.find(text)>=0 or text.find(titleName)>=0)):
# addStart=True
# if level:
# levelList.append("{}:".format(level)+paragraph.text)
# levelText=f"{int(level)+1}级标题-"+text
# else:
# if addStart:
# if(text.startswith("图") or text.startswith("注:")):
# continue
# if(len(text)>30):
# i=i+1
# words.append("{}:".format(levelText)+text)
# 将所有段落文本拼接成一个字符串,并用换行符分隔
# 遍历字典,查找包含 "标题的" 的键
for key, value in wordContent.items():
if (titleName.find(key)>=0 or key.find(titleName)>=0):
words.extend(value) # 将对应的值添加
if len(words)==0:
raise Exception("checkRepeatText,获取长度为0")
text = '\n'.join(words)
userLog.info(f"文档相似性检查----需要处理的总数是{len(words)}")
# 将文本写入txt文件
with open("checkRepeatText.txt", 'w', ) as txt_file:
txt_file.write(text)
time.sleep(1)
yield "文档相似性检查----文档内容转换中",".","."
loader = TextLoader(file_path='checkRepeatText.txt')
docs = loader.load()
# print(docs)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=100, chunk_overlap=10, add_start_index=True,
separators=["\n\n", "\n"])
splits = text_splitter.split_documents(docs)
uuids = []
yield "文档相似性检查----文档保存中",".","."
global embeddings
vectorstore = Chroma(persist_directory=vector_store_path, embedding_function=embeddings)
for i in range(len(splits)):
uuidStr=str(uuid.uuid4())
uuids.append(uuidStr)
logging.info(f"checkRepeatTextuuidLen{len(uuids)}")
vectorstore.add_documents(documents=splits, ids=uuids)
yield "文档相似性检查----校验文档是否已经完成保存",".","."
while True:
time.sleep(0.3)
ress = vectorstore.similarity_search(words[0])
if (len(ress) > 0):
break
yield words,uuids,vectorstore
# @app.route('/checkRepeatText/<filename>', methods=['GET'])
def checkRepeatText(filename,user_id,outLog):
global userLog
userLog=outLog.get_queue(user_id,"checkRepeatText")
yield "文档相似性检查---启动中...."
userLog.info("文档相似性检查---任务开始")
vector_store_path="vector_store"+str(uuid.uuid4())
for titleName in findTitleName(filename):
if(isinstance(titleName ,tuple)):
if(len(titleName)==3):
yield titleName[0]+titleName[1]+"/"+titleName[2]
else:
yield titleName
if(isinstance(titleName ,tuple)):
# try:
yield "文档相似性检查----文档内容转换中"
try:
for words,uuids,vectorstore in getDocxToText(titleName[0],titleName[1],vector_store_path):
if isinstance(words, str):
yield words+uuids+vectorstore
except Exception as e:
yield f"文档相似性检查----文档内容获取失败,未找到**{titleName}**相关内容或文件无法正常打开。可以尝试用WORD或WPS打开文件,进行修复并另存,用另存的文件再做一次尝试。"
userLog.warning(e)
userLog.warning(f"文档相似性检查----文档内容获取失败,未找到**{titleName}**相关内容或文档打开失败")
outLog.mark_done(user_id, "checkRepeatText")
return
# 记录程序开始的时间戳‘
reslist = []
count = 0
for i in words:
count += 1
yield f"文档相似性检查--对{titleName[0]}章节,进行文档内容检查中{count}/{len(words)}"
result = vectorstore.similarity_search(i)
textTag = i.split("")[0]
for content in result:
text = content.page_content
tag = text.split("")[0].replace('\n', '')
if (textTag.find(tag) >= 0):
continue
try:
url = "http://0.0.0.0:8192/taskflow/checkRepeatText"
headers = {"Content-Type": "application/json"}
data = {
"data": {
"text": [[i[i.find('') + 1:], text[text.find('') + 1:]]],
}
}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
res = json.loads(r.text)
res=res["data"]
# res = similarity([[i[i.find(':') + 1:], text[text.find(':') + 1:]]])
except Exception as e:
userLog.warning("文档相似性检查--发生异常:")
userLog.warning(e)
userLog.warning(i)
userLog.warning(text)
continue
if (res[0]["similarity"] >= 0.96):
# 判断重复内容是否被放入
if (len(reslist) > 0):
isExist = False
for neirong in reslist:
if i in neirong.values():
isExist = True
break
if not isExist:
# reslist.append({"yuanwen1":i[i.find(':') + 1:],"yuanwen2":text[text.find(':') + 1:],"similarity":res[0]["similarity"]})
userLog.info("【在"+i[:i.find('')].replace("\n","")+"下包含:"+i[i.find('') + 1:].replace("\n","")+"<br>在"+text[:text.find('')].replace("\n","")+"**下包含:"+text[text.find('') + 1:].replace("\n","")+"<br>以上两段内容相似度:"+'{:.2f}'.format(res[0]["similarity"])+"")
reslist.append({"yuanwen1":i.replace("\n",""),"yuanwen2":text.replace("\n",""),"similarity":res[0]["similarity"]})
else:
reslist.append({"yuanwen1":i.replace("\n",""),"yuanwen2":text.replace("\n",""),"similarity":res[0]["similarity"]})
# print(i.split(":")[1] + "\n" + text.split(":")[1])
userLog.info("【在"+i[:i.find('')].replace("\n","")+"下包含:"+i[i.find('') + 1:].replace("\n","")+"<br>在"+text[:text.find('')].replace("\n","")+"**下包含:"+text[text.find('') + 1:].replace("\n","")+"<br>以上两段内容相似度:"+'{:.2f}'.format(res[0]["similarity"])+"")
# vectorstore.delete(ids=uuids)
shutil.rmtree(vector_store_path)
resInfo=f"{titleName[0]}章节,发现相似内容:<br>"
if(len(reslist)>0):
for res in reslist:
resInfo+="【在**"+res["yuanwen1"][:res["yuanwen1"].find('')]+"**下包含:"+res["yuanwen1"][res["yuanwen1"].find('') + 1:]+"<br>在**"+res["yuanwen2"][:res["yuanwen2"].find('')]+"**下包含:"+res["yuanwen2"][res["yuanwen2"].find('') + 1:]+"<br>以上两段内容***相似度***:"+'{:.2f}'.format(res['similarity'])+"】<br>"
yield resInfo
else:
yield "**未发现相似内容**"
userLog.info("文档相似性检查----未发现相似内容**")
outLog.mark_done(user_id, "checkRepeatText")